Department of Agriculture, Fisheries and Food, 2011. Food Harvest 2020, a vision for Irish agri-food and fisheries. Retrieved November 2011, from https://www.agriculture.gov.ie/media/migration/foodindustrydevelopmenttrademarkets/foodharvest2020/foodharvest2020/2020strategy/2020Foodharvest190710.pdf.
Department of Agriculture, Fisheries and Food, 2015. Foodwise 2025, Local Roots: A vision for growth for the Irish agricultural economy for the next ten years. Retrieved August 2017, from https://www.agriculture.gov.ie/media/migration/foodindustrydevelopmenttrademarkets/agri-foodandtheeconomy/foodwise2025/report/FoodWise2025.pdf
Crowe MA. Fertility in dairy cows – the conference in perspective. In Fertility in Dairy Cows bridging the gaps. Eds Royal MD, Friggens NC and Smith RF. UK: British Society of Animal Science / Cambridge University Press; 2007. pp. 156–60.
Wickham et al., 2008; Wickham BW, Cromie A, Kearney JF and Evans R 2008. A genetic solution to infertility in Irish dairy cattle. In Fertility in Dairy Cows bridging the gaps. Eds Royal MD, Friggens NC and Smith RF. British Society of Animal Science / Cambridge University Press 2007 pp 156–160.
Berry DP, Wall E, Pryce JE. Genetics and genomics of reproductive performance in dairy and beef cattle. Animal. 2014;8(s1):105–21.
Article
PubMed
Google Scholar
Santoro A, Vandepitte J, Hostens M, Carter F, Matthews E, O’Flaherty R, Waegeman W, Fahey AG, Hermans K, Ferris C, Bell M, Sorensen MT, Höglund J, Rudd PM, Crowe MA. Potential for novel glycan measurements in milk as biomarker phenotypes for dairy traits. Proceedings EAAP Annual conference, Belfast, August 2016. pp. 300.
Höglund J, Sorensen MT, Larsen T, Foldager L, Ferris C, Bell M, Carter F, Santoro A, Crowe M, Ingvartsen KL. Potential for novel metabolite measurements in milk as biomarker phenotypes for dairy traits. Proceedings EAAP Annual conference, Belfast, August 2016. pp. 299.
Vanlierde A, Grelet C, Gengler N, Ferris C, Sorensen MT, Höglund J, Carter F, Santoro A, Hermans K, Hostens M, Dardenne P, Dehareng F. Potential of milk MIR spectra to develop new health phenotypes for dairy cows in the GplusE project. Proceedings EAAP Annual conference, Belfast, August 2016. pp. 299.
Marchitelli C, Signorelli F, Napolitano F, Buttazzoni L, Grelet C, Vanlierde A, Dehareng F, Soyeurt H, Crowe M, GplusE Consortium. Expression profiles of immune genes in milk somatic cells and MIR predicted mineral contents in milk as indicators of mastitis. 36th International Society for Animal Genetics conference 2017; Abstract MT153: 100.
Morotti F, SanchesBV PJHF, Basso AC, Siqueira ER, Lisboa LA, Seneda MM. Pregnancy rate and birth rate of calves from a large-scale IVF program using reverse-sorted semen in Bos indicus, Bos indicus-taurus, and Bos taurus cattle. Theriogenology. 2014;81:696–701.
Article
CAS
PubMed
Google Scholar
Forde N, Beltman ME, Lonergan P, Diskin M, Roche JF, Crowe MA. Oestrous cycles in Bos Taurus cattle. Anim Reprod Sci. 2011;124:163–9.
Article
CAS
PubMed
Google Scholar
Tamminga S, Luteijn PA, Meijer RGM. Changes in composition and energy content of liveweight loss in dairy cows with time after parturition. Livest Prod Sci. 1997;52:31–8.
Article
Google Scholar
Knight CH, Beever DE, Sorensen A. Metabolic loads to be expected from different genotypes under different systems. Metabolic stress in dairy cows. British Society of Animal Science Occ Publication. 1999;24:37–6.
Google Scholar
Sheehy MR, Fahey A, Aungier SPM, Carter F, Crowe MA, Mulligan FJ. A comparison of serum metabolic and production profiles of dairy cows that maintained or lost body condition 15 days before calving. J Dairy Sci. 2016;100:1–12.
Google Scholar
Mulligan FJ, O'Grady L, Rice DA, Doherty ML. A herd health approach to dairy cow nutrition and production diseases of the transition cow. Anim Reprod Sci. 2006;96:331–53.
Article
CAS
PubMed
Google Scholar
Opsomer G, Gröhn YT, Hertl J, Deluycker H, Coryn M, de Kruif A. Risk factors for postpartum ovarian dysfunction in high producing dairy cows in Belgium: a field study. Theriogenology. 2000;53:841–57.
Article
CAS
PubMed
Google Scholar
Crowe MA, Diskin MG, Williams EJ. Parturition to resumption of ovarian cyclicity: comparative aspects of beef and dairy cows. Animal. 2014;8:1–14.
Article
Google Scholar
Crowe MA, Williams EJ, Mulligan FJ. Physiological and health factors affecting fertility in beef and dairy cows. Cattle Practice. 2015;23:47–61.
Google Scholar
Crowe MA, Williams EJ. Triennial lactation symposium: effects of stress on postpartum reproduction in dairy cows. J Anim Sci. 2012;90:1722–7.
Article
CAS
PubMed
Google Scholar
Diskin MG, Parr MH, Morris DG. Embryo death in cattle: an update. Reprod Fert Develop. 2012;24:244–51.
Article
Google Scholar
Leroy JLMR, Opsomer G, Van Soom A, Goovaerts IGF, Bols PEJ. The importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high yielding dairy cows. Part I – the importance of negative energy balance and altered corpus luteum function to the reduction of oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim. 2008a;43:612–22.
Article
CAS
PubMed
Google Scholar
Leroy JL, Van Soom A, Opsomer G, Goovaerts IG, Bols PE. Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows. Reprod Domest Anim. 2008b;43:623–32.
Article
CAS
PubMed
Google Scholar
LeBlanc S. Monitoring metabolic health of dairy cattle in the transition period. J Reprod Dev. 2010b;56:S29–35.
Article
PubMed
Google Scholar
Garnswortthy PC, Sinclair KD, Webb R. Integration of physiological mechanisms that influence fertility in dairy cows. Animal. 2008;2:1144–52.
Article
Google Scholar
Gong JG, Lee WJ, Garnsworthy PC, Webb R. Effect of dietary-induced increases in circulating insulin concentration during the early postpartum period on reproductive function in dairy cows. Reproduction. 2002;123:419–27.
Article
CAS
PubMed
Google Scholar
Bossaert P, DeCock H, Leroy JLMR, De Campeneere S, Bols PEJ, Filliers M, Opsomer G. Immunohistochemical visualization of insulin receptors in formalin-fixed bovine ovaries post mortem and in granulosa cells collected in vivo. Theriogenology. 2010;73:1210–9.
Article
CAS
PubMed
Google Scholar
Vanholder T, Leroy JLMR, Dewulf J, Duchateau L, Coryn M, de Kruif A, Opsomer G. Hormonal and metabolic profiles of high-yielding dairy cows prior to ovarian cyst formation or first ovulation post partum. Reprod Domest Anim. 2005;40:460–7.
Article
CAS
PubMed
Google Scholar
Fouladi-Nashta AA, Gutierrez CG, Garnsworthy PC, Webb R. Effect of dietary carbohydrate source on oocyte/embryo quality and development in high-yielding, lactating dairy cattle. Biol Reprod. (Special Issue) 2005;72:135–6.
Lemley CO, Butler ST, Butler WR, Wilson ME. Short communication: insulin alters hepatic progesterone catabolic enzymes cytochrome P450 2C and 3A in dairy cows. J Dairy Sci. 2008;91:641–5.
Article
CAS
PubMed
Google Scholar
Barton BA, Rosario HA, Anderson GW, Grindle BP, Caroll DJ. Effects of dietary crude protein, breed, parity, and health status on the fertility of dairy cows. J Dairy Sci. 1996;79:2225–36.
Article
CAS
PubMed
Google Scholar
Cools S, Van den Broeck W, Vanhaecke L, Heyerick A, Bossaert P, Hostens M, Opsomer G. Feeding soybean meal increases the blood level of isoflavones and reduces the steroidogenic capacity in bovine corpora lutea, without affecting peripheral progesterone concentrations. Anim Reprod Sci. 2014;144:79–89.
Article
CAS
PubMed
Google Scholar
Hostens M, Fievez V, Vlaeminck B, Buyse J, Leroy J, Piepers S, De Vliegher S, Opsomer G. The effect of marine algae in the ration of high-yielding dairy cows during transition on metabolic parameters in serum and follicular fluid around parturition. J Dairy Sci. 2011;94:4603–15. https://doi.org/10.3168/jds.2010-3899.
Article
CAS
PubMed
Google Scholar
Silvestre FT, Carvalho TSM, Francisco N, Santos JEP, Staples CR, Jenkins TC, Thatcher WW. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: I. Uterine and metabolic responses, reproduction, and lactation. J Dairy Sci. 2011;94:189–204.
Article
CAS
PubMed
Google Scholar
Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G, Van Soom A. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130:485–95.
Article
CAS
PubMed
Google Scholar
Leroy JLMR, Van Soom A, Opsomer G, Goovaerts IGF, Bols PEJ. Reduced fertility in high yielding dairy cows: are the oocyte and embryo in danger? (part II). Reprod Domest Anim. 2008;43:623–32.
Article
CAS
PubMed
Google Scholar
Leroy JLMR, Opsomer G, De Vliegher S, Vanholder T, Goossens L, Geldhof A, Bols PEJ, de Kruif A, Van Soom A. Comparison of embryo quality in high-yielding dairy cows in dairy heifers and in beef cows. Theriogenology. 2005;64:2022–36.
Article
CAS
PubMed
Google Scholar
Hurley WL, Doane RM. Recent developments in the roles of vitamins and minerals in reproduction. J Dairy Sci. 1989;72:784–804.
Article
CAS
PubMed
Google Scholar
Pontes GCS, Monteiro PLJ, Prata AB, Guardieiro MM, Pinto DAM, Fernandes GO. Effect of injectable vitamin E on incidence of retained fetal membranes and reproductive performance of dairy cows. J Dairy Sci. 2015;98:2437–49.
Article
CAS
PubMed
Google Scholar
Donofrio G, Herath S, Sartori C, Cavirani S, Flammini F, Sheldon M. Bovine herpesvirus 4 is tropic for bovine endometrial cells and modulates endocrine function. Reproduction. 2007;134:183–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanderson MW, Gnad DP. Biosecurity for reproductive diseases. Vet Cl Nth Amer: Food Anim Pract. 2002;18:79–98.
Google Scholar
LeBlanc SJ, Duffield TF, Leslie KE, Bateman KG, Keefe GP, Walton JS, et a. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J Dairy Sci, 2002;85:2223–2236.
Sheldon IM, Lewis GS, LeBlanc S, Gilbert RO. Defining postpartum uterine disease in cattle. Theriogenology. 2006;65:1516–30.
Article
PubMed
Google Scholar
Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol Reprod. 2009;81:1025–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pascottini OB, Dini P, Hostens M, Ducatelle R, Opsomer G. A novel cytological sampling technique to diagnose subclinical endometritis and comparison of staining methods for endometrial cytology samples in dairy cows. Theriogenology. 2015;84:1438–46.
Pursley JR, Mee MO, Wiltbank MC. 1995. Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology. 2015;44:915–23.
Article
Google Scholar
Van Eerdenburg FJCM, Loeffler SH, Van Vliet JH. Detection of oestrus in dairy cows: a new approach to an old problem. Vet Q. 1997;32:137–41.
Google Scholar
Diskin MG, Sreenan JM. Expression and detection of oestrus in cattle. Reprod Nutr Dev. 2000;40:481–91.
Article
CAS
PubMed
Google Scholar
Vliet JHV, Van Eerdenburg FJCM. Sexual activities and oestrus detection in lactating Holstein cows. Appl Anim Behav Sci. 1996;50:57–69.
Article
Google Scholar
Roelofs JB, Van Eerdenburg FJCM, Soede NM, Kemp B. Various behavioral signs of estrous and their relationship with time of ovulation in dairy cattle. Theriogenology. 2005;63:1366–77.
Article
CAS
PubMed
Google Scholar
Diskin MG. Reproductive management of dairy cows: a review (part 1). Ir Vet J. 2008;61:326–32.
Google Scholar
Trimberger GW, Davis HP. Conception rate in dairy cattle from artificial insemination at various stages of estrus. Nebraska Agric Exp Stn Res Bulletin. 1943;129:1–14.
Google Scholar
Holman A, Thompson J, Routly JE, Cameron J, Grove-White D, Smith RF, Dobson H. Comparison of oestrus detection methods in dairy cattle. Vet Rec. 2011;169:47–53.
Article
CAS
PubMed
Google Scholar
Peralta OA, Pearson RE, Nebel RL. Comparison of three estrus detection systems during summer in a large commercial dairy herd. Anim Reprod Sci. 2005;87:59–72.
Article
CAS
PubMed
Google Scholar
Aungier SPM, Roche JF, Sheehy M, Crowe MA. Effects of management and health on the use of activity monitoring for estrus detection in dairy cows. J Dairy Sci. 2012;95:2452–66.
Article
CAS
PubMed
Google Scholar
Aungier SPM, Roche JF, Duffy P, Scully S, Crowe MA. The relationship between activity clusters detected by an automatic activity monitor and endocrine changes during the periestrous period in lactating dairy cows. J Dairy Sci. 2015;98:1666–84.
Article
CAS
PubMed
Google Scholar
Friggens NC, Bjerring M, Ridder C, Højsgaard S, Larsen T. Improved detection of reproductive status in dairy cows using milk progesterone measurements. Reprod Domest Anim. 2008;43(Suppl 2):113–21.
Article
PubMed
Google Scholar
Cordoba MC, Fricke PM. Initiation of the breeding season in a grazing-based dairy by synchronization of ovulation. J Dairy Sci. 2002;85:1752–63.
Article
CAS
PubMed
Google Scholar
Jobst SM, Nebel RL, McGilliard ML, Pelzert KD. Evaluation of reproductive performance in lactating dairy cows with prostaglandin F2α, gonadotropin-releasing hormone, and timed artificial insemination. J Dairy Sci. 2000;83:2366–72.
Article
CAS
PubMed
Google Scholar
Herlihy MM, Giordano JO, Souza AH, Ayres H, Ferreira RM, Keskin A. Nascimento AB, Guenther JN, Gaska JM, Kacuba SJ, Crowe MA, Butler ST and Wiltbank MC. Presynchronization with double-Ovsynch improves fertility at first postpartum artificial insemination in lactating dairy cows. J Dairy Sci 2012;95: 7003-7014.
McNally JC, Crowe MA, Roche JF, Beltman ME. Effects of physiological and/or disease status on the response of postpartum dairy cows to synchronization of estrus using an intravaginal progesterone device. Theriogenology. 2014;82:1263–72.
Article
CAS
PubMed
Google Scholar
Senger PL. The estrus detection problem: new concepts, technologies, and possibilities. J Dairy Sci. 1994;77:2745–53.
Article
CAS
PubMed
Google Scholar
Cowie TA. Pregnancy diagnosis tests: a review. Commonwealth agricultural bureaux joint publication No. 13, Oxford, UK; 1948. p. 11–7. 15.
Wisnicky W, Cassida LE. A manual method for diagnosis of pregnancy in cattle. J Am Vet Med Assoc. 1948;113:451.
Google Scholar
Fricke PM. Scanning the future – ultrasonography as a reproductive management tool for dairy cattle. J Dairy Sci. 2002;85:1918–26.
Article
CAS
PubMed
Google Scholar
Griffin PG, Ginther OJ. Research applications of ultrasonic imaging in reproductive biology. J Anim Sci. 1992;70:953–72.
Article
CAS
PubMed
Google Scholar
Fricke PM, Ricci A, Giordano JO, Carvalho PD. Methods for and implementation of pregnancy diagnosis in dairy cows. Vet Clin N Am Food Anim Pract. 2016;32:165–80.
Article
Google Scholar
Nebel RL. On-farm milk progesterone tests. J Dairy Sci. 1988;71:1682–90.
Article
CAS
PubMed
Google Scholar
Cordoba MC, Sartori R, Fricke PM. Assessment of a commercially available early conception factor (ECF) test for determining pregnancy status of dairy cattle. J Dairy Sci. 2001;84:1884–9.
Article
CAS
PubMed
Google Scholar
López-Gatius F, Santolaria P, Mundet I, Yániz JL. Walking activity at estrus and subsequent fertility in dairy cows. Theriogenology. 2005;63:1419–29.
Article
PubMed
Google Scholar
García-Ispierto I, López-Gatius F, Santolaria P, Yániz JL, Nogareda C, López-Béjar M. Factors affecting the fertility of high producing dairy herds in northeastern Spain. Theriogenology. 2007;67:632–8.
Article
PubMed
Google Scholar
Vishwanath R. Artificial insemination: the state of the art. Theriogenology. 2003;59:571–84.
Article
CAS
PubMed
Google Scholar
DeJarnette JM, Marshall CE, Lenz RW, Monke DR, Ayars WH, Sattler CG. Sustaining the fertility of artificially inseminated dairy cattle: the role of the artificial insemination industry. J Dairy Sci. 2004;87(E. Suppl):E93–E104.
Article
Google Scholar
Pace MM. Has the fertilizing capacity of bovine spermatozoa changed? Pages 13 to 21 in reproductive loss in dairy cows: is the trend reversible? Proc. II bi-annual W. E. Petersen Symp., University of MN—St. Paul Campus, Minneapolis, MN 2003.
Vishwananth R, Nebel RL, McMillan WH, Pitt CJ, Macmillan KL. Selected times of insemination with microencapsulated bovine spermatozoa affect pregnancy rates of synchronized heifers. Theriogenology. 1997;48:369–76.
Article
Google Scholar
Watson PF. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their postthawing function. Reprod Fertil Dev. 1995;7:213–33.
Article
Google Scholar
Heins BJ, Hansen LB, Seykora AJ. Production of pure Holsteins versus crossbreds of Holstein with Normande, Montbeliarde, and Scandinavian red. J Dairy Sci. 2006;89:2799–804.
Article
CAS
PubMed
Google Scholar
Hiers EA, Barthle CR, Dahms MKV, Portillo GE, Bridges GA, Rae DO, Thatcher WW, Yelich JV. Synchronization of Bos Indicus x Bos Taurus cows for timed artificial insemination using gonadotropin-releasing hormone plus prostaglandin F2alpha in combination with melengestrol acetate. J Anim Sci. 2003;81:830–5.
Article
CAS
PubMed
Google Scholar
Peters JL, Senger PL, Rosenberger JL, O’Connor ML. Radiographic evaluation of bovine artificial inseminating technique among professional and herdsman-inseminators using 0.5 and 0.25-ml French straws. J Anim Sci. 1984;59:1671–83.
Article
CAS
PubMed
Google Scholar
Lopez-Gatius F (2000). Site of semen deposition in cattle: a review. Theriogenology 2000; 53: 1407-1414.
Verberckmoes S, Van Soom A, De Pauw I, Dewulf J, Vervaet C, de Kruif A. Assessment of a new utero-tubal junction insemination device in dairy cattle. Theriogenology. 2004;61:103–15.
Article
PubMed
Google Scholar
Verberckmoes S, Van Soom A, Dewulf J, Thys M, de Kruif A. Low dose insemination in cattle with the Ghent device. Theriogenology. 2005;64:1716–28.
Article
PubMed
Google Scholar
López-Gatius F, Hunter RHF. Intrafollicular insemination for the treatment of infertility in the dairy cow. Theriogenology. 2011;75:1695–8.
Article
PubMed
Google Scholar
Nebel RL, McGilliard ML. Interactions of high milk yield and reproductive performance in dairy cows. J Dairy Sci. 1993;76:3257–68.
Article
CAS
PubMed
Google Scholar
Lucy MC. Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci. 2001;84:1277–93.
Article
CAS
PubMed
Google Scholar
Walsh SW, Williams EJ, Evans ACO. A review of the causes of poor fertility in high milk producing dairy cows. Anim Reprod Sci. 2011;123:127–38.
Article
CAS
PubMed
Google Scholar
Opsomer G, Leroy JLMR, Vanholder T, Bossaert P, Cools S, Hostens M, et al. Major causes of declining fertility in dairy cows in Europe and some strategies to improve reproductive performance. In: Proceedings of the 18th annual meeting of the Japanese veterinary medicine association; 2007. p. 97–9.
Google Scholar
Leblanc S. Assessing the association of the level of milk production with reproductive performance in dairy cattle. J Reprod Develop. 2010a;56:S1–7.
Article
Google Scholar
Khoury MJ, Ioannidis JP. Medicine. Big data meets public health. Science. 2014;346:1054–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff. 2014;33:1163–70.
Article
Google Scholar
Rutten CJ, Velthuis AGJ, Steeneveld W, Hogeveen H. Invited review: sensors to support health management on dairy farms. J Dairy Sci. 2013;96:1928–52.
Article
CAS
PubMed
Google Scholar
de Kruif A, Opsomer G. Integrated dairy herd health management as the basis for prevention. Vlaams Diergeneeskundig Tijdschrift. 2004;73:44–52.
Google Scholar
Mark T, Jakobsen JH, Jorjani H, Fikse WF, Philipsson J. International trends in recording and genetic evaluation of functional tratis in dairy cattle. Proc 56th Annual Meeting of EAAP, Upsalla, Sweden 2005;1–12. Available at http://old.eaap.org/Previous_Annual_Meetings/2005Uppsala/Papers/CG2.1_Mark.pdf
Bertrand J, Wiggans G. Validation of data and review of results from genetic evaluation systems for US beef and dairy cattle. In: Proceedings of the 6th world congress on genetics applied to livestock production; 1998. p. 11–6.
Google Scholar
Lissemore KD. The use of computers in dairy herd health program: a review. Can Vet J. 1989;30:631.
CAS
PubMed
PubMed Central
Google Scholar
Gloy BA, Akridge JT. Computer and internet adoption on large US farms. Internation Food Agribus Man Rev. 2000;3:323–38.
Article
Google Scholar
Chen HC, Chiang RHL, Storey VC. Business intelligence and analytics: from big data to big impact. Mis Quart. 2012;36:1165–88.
Google Scholar
Sagiroglu S, Sinanc D. Big data: A review. Collaboration Technologies and Systems (CTS), International Conference on: IEEE. 2013. p. 42–47.
Gengler N, Berry D, Bastin C 2013. Use of automated systems for recording of direct and indirect data with special emphasis on the use of MIR milk spectra (OptiMIR project). ICAR Technical Series no 2013;17:55.
van Engelen S, Bovenhuis H, Mollenhorst H, Rademaker J, Visker M 2017. Genetic background of predicted methane based on milk mid-infrared spectra of Dutch Holstein Friesian cows.
Google Scholar
van Gastelen S, Dijkstra J. Prediction of methane emission from lactating dairy cows using milk fatty acids and mid-infrared spectroscopy. J Sci Food Agric. 2016;96:3963–8.
Article
CAS
PubMed
Google Scholar
Egger-Danner C, Cole JB, Pryce JE, Gengler N, Heringstad B, Bradley A, et al. Invited review: overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal. 2015;9:191–207.
Article
CAS
PubMed
Google Scholar
Frost AR, Schofield CP, Beaulah SA, Mottram TT, Lines JA, Wathes CM. A review of livestock monitoring and the need for integrated systems. Comput Electron Agric. 1997;17:139–59.
Article
Google Scholar
Tomaszewski MA. Record-keeping systems and control of data flow and information retrieval to manage large high producing herds. J Dairy Sci. 1993;76:3188–94.
Article
CAS
PubMed
Google Scholar
Viguier C, Arora S, Gilmartin N, Welbeck K, O'Kennedy R. Mastitis detection: current trends and future perspectives. Trends Biotechnol. 2009;27:486–93.
Article
CAS
PubMed
Google Scholar
Hovinen M, Pyorala S. Invited review: udder health of dairy cows in automatic milking. J Dairy Sci. 2011;94:547–62.
Article
CAS
PubMed
Google Scholar
Friggens NC, Chagunda MGG. Prediction of the reproductive status of cattle on the basis of milk progesterone measures: model description. Theriogenology. 2005;64:155–90.
Article
CAS
PubMed
Google Scholar
Friggens NC, Chagunda MGG, Bjerring M, Ridder C, Hojsgaard S, Larsen T. Estimating degree of mastitis from time-series measurements in milk: a test of a model based on lactate dehydrogenase measurements. J Dairy Sci. 2007;90:5415–27.
Article
CAS
PubMed
Google Scholar
Halachmi I, Polak P, Roberts DJ, Klopcic M. Cow body shape and automation of condition scoring. J Dairy Sci. 2008;91:4444–51.
Article
CAS
PubMed
Google Scholar
Weber A, Salau J, Haas JH, Junge W, Bauer U, Harms J, et al. Estimation of backfat thickness using extracted traits from an automatic 3D optical system in lactating Holstein-Friesian cows. Livest Sci. 2014;165:129–37.
Article
Google Scholar
Friggens NC, Ingvartsen KL, Emmans GC. Prediction of body lipid change in pregnancy and lactation. J Dairy Sci. 2004;87:988–1000.
Article
CAS
PubMed
Google Scholar
Bewley JM, Peacock AM, Lewis O, Boyce RE, Roberts DJ, Coffey MP, et al. Potential for estimation of body condition scores in dairy cattle from digital images. J Dairy Sci. 2008a;91:3439–53.
Article
CAS
PubMed
Google Scholar
Bewley JM, Boyce RE, Hockin J, Munksgaard L, Eicher SD, Einstein ME, et al. Influence of milk yield, stage of lactation, and body condition on dairy cattle lying behaviour measured using an automated activity monitoring sensor. J Dairy Res. 2010;77:1–6.
Article
CAS
PubMed
Google Scholar
Chapinal N, de Passille AM, Rushen J, Wagner S. Automated methods for detecting lameness and measuring analgesia in dairy cattle. J Dairy Sci. 2010;93:2007–13.
Article
CAS
PubMed
Google Scholar
De Nardi R, Marchesini G, Stefani AL, Barberio A, Andrighetto I, Segato S. Effect of feeding fine maize particles on the reticular pH, milk yield and composition of dairy cows. J Anim Physiol Anim Nutr. 2014;98:504–10.
Article
CAS
Google Scholar
Humer E, Khol-Parisini A, Gruber L, Gasteiner J, Abdel-Raheem SM, Zebeli Q. Long-term reticuloruminal pH dynamics and markers of liver health in early-lactating cows of various parities fed diets differing in grain processing. J Dairy Sci. 2015;98:6433–48.
Article
CAS
PubMed
Google Scholar
Burdick NC, Carroll JA, Dailey JW, Randel RD, Falkenberg SM, Schmidt TB. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J Therm Biol. 2012;37:339–43.
Article
Google Scholar
Hillman PE, Gebremedhin KG, Willard ST, Lee CN, Kennedy AD. Continuous measurements of vaginal temperature of female cattle using a data logger encased in a plastic anchor. Appl Eng Agric. 2009;25:291–6.
Article
Google Scholar
Laister S, Stockinger B, Regner AM, Zenger K, Knierim U, Winckler C. Social licking in dairy cattle-effects on heart rate in performers and receivers. Appl Anim Behav Sci. 2011;130:81–90.
Article
Google Scholar
Spahr S. New technologies and decision making in high producing herds. J Dairy Sci. 1993;76:3269–77.
Article
CAS
PubMed
Google Scholar
Pietersma D, Lacroix R, Wade K. A framework for the development of computerized management and control systems for use in dairy farming. J Dairy Sci. 1998;81:2962–72.
Article
CAS
Google Scholar
Bewley JM, Grott MW, Einstein ME, Schutz MM. Impact of intake water temperatures on reticular temperatures of lactating dairy cows. J Dairy Sci. 2008b;91:3880–7.
Article
CAS
PubMed
Google Scholar
Roth Z. Heat stress, the follicle, and its enclosed oocyte: mechanisms and potential strategies to improve fertility in dairy cows. Reprod Domest Anim. 2008;43:238–44.
Article
PubMed
Google Scholar
Shehab-El-Deen MAMM, Leroy JLMR, Fadel MS, Saleh SYA, Maes D, Van Soom A. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci. 2010;117:189–200.
Article
CAS
PubMed
Google Scholar
Tao S, Bubolz J, Do Amaral B, Thompson I, Hayen M, Johnson S, et al. Effect of heat stress during the dry period on mammary gland development. J Dairy Sci. 2011;94:5976–86.
Article
CAS
PubMed
Google Scholar
Beng, L. T., P. B. Kiat, L. N. Meng, and P. N. Cheng. 2016. Field testing of IoT devices for livestock monitoring using Wireless Sensor Network, near field communication and Wireless Power Transfer. Pages 169–173 in Proc. Technologies for Sustainability (SusTech), 2016 IEEE Conference on. IEEE.
Kulatunga C, Shalloo L, Donnelly W, Robson E, Ivanov S. Opportunistic wireless networking for smart dairy farming. IT Professional. 2017;19:16–23.
Article
Google Scholar
Etherington WG, Kinsel ML, Marsh WE. Options in dairy data management. Can Vet J. 1995;36:28.
CAS
PubMed
PubMed Central
Google Scholar
Wenz JR, Giebel SK. Retrospective evaluation of health event data recording on 50 dairies using dairy comp 305. J Dairy Sci. 2012;95:4699–706.
Article
CAS
PubMed
Google Scholar
Hansen MM, Miron-Shatz T, Lau AY, Paton C. Big data in science and healthcare: a review of recent literature and perspectives. Contribution of the IMIA social media working group. Yearbook of medical informatics. 2014;9:21–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
KeltonDF LKD, Martin RE. Recommendations for recording and calculating the incidence of selected clinical diseases of dairy cattle. J Dairy Sci. 1998;81:2502–9.
Article
Google Scholar
Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc. 2016;23:1007–15.
Article
PubMed
PubMed Central
Google Scholar
Liao KP, Cai TX, Savova GK, Murphy SN, Karlson EW, Ananthakrishnan AN, Gainer VS, Shaw SY, Xia ZQ, Szolovits P, Churchill S, Kohane I. Development of phenotype algorithms using electronic medical records and incorporating natural language processing. Brit Med J. 2015;350:h1885.
Article
PubMed
PubMed Central
Google Scholar